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Abstract — Unigqueness ol the incremental response is investigated for an elastoplastic coupling
modet with clastic stitfaess degradation. The criteria of second order work positiveness and strain
localization are used in the form derived by Bigoni and Hueckel (1991, Ine. J. Solids Structures 28,
197-213). A numerical example shows that in a triaxial test the loss of second order work positiveness
oceurs at the positive hardening medulus, whereas the condition of strain localization is never
fullilled. Thus shear bands or splits are predicted not to form. despite strong elasticity degradation
und non-associativity.

L. INTRODUCTION

The behavior of pressure sensitive dilatant materials such as rock. concrete or soil may be
characterized by a visible degradation of clastic stiffness during plastic deformation (Fig.
1). Degradation is a phenomenological counterpart of generation and/or growth of defects
and voids in the material. The decrease in elastic stiffness may thus be a convenient indirect
measure of material damage. It is beheved that in an elastoplastic continuum the above-
mentioned damage leads eventually to strain localization or other forms of loss of unique-
ness of the incremental response even in the presence of small strains and rotations.

To represent the clasticity degradation, several models were developed. Dougill pro-
posed @ model (1976) in which the material is elastic “fracturing™, f.e. all deformations are
recovered after total unloading, but the unloading-reloading curves show a strong stiffness
degradation. In the model proposed by Hueckel (1975, 1976), a coupling was introduced
between clastic and plastic deformations. The behavior of the idealized material results in
a combination of both the plastic strain and the elustic degradation. The model was analyzed
in terms of stubility and uniqueness by Maier and Hueckel (1977, 1979). Variational
principles for elastoplastic coupling were established by Capurso (1979) using quadratic
optimization. A thermodynamic strain space formulation for coupled laws was given by
Dafalius (1977). Recently the coupled elastoplasticity has been used to model the behavior
of concerete under complex loading conditions (Chen and Han, 1988 ; Hun and Chen, 1986).

The aim of this paper is to analyze the possible influence of plastically induced changes
in elasticity moduli on uniqueness and on strain localization in small strain clastoplasticity
theory employing the criteria in the form developed by Bigoni and Hueckel (1991). Unique-
ness of the rate response is studied for a material with varying elastic stiffness, as described
by the coupled clustoplastic model.

For any materiul clement, subjected to progressive damage, the determination of the
validity range of the constitutive law is a crucial and often complicated question. Loss of
uniqueness of the rate response of such an element terminates the validity of the stress—
strain relationship. Localization is an extreme form of loss of uniqueness, at which a
discontinuous strain rate mode becomes admissible. The coupled clastoplasticity leads to a
particular form ol non-associative constitutive law in which the deviation from normality
is a function of clasticity degradation (Hueckel, 1975, 1976; Maier and Hueckel, 1979;
Hucckel and Maicr, 1977). The non-associativity of the flow rule is known to have an
unstabilizing effect on the material behavior (Rudnicki and Rice. 1975; Rice. 1976). Thus,
the question arises how much the coupling-induced non-associativity, and therefore degra-
dation of clasticity, affects the uniqueness of the response. As a suflicient condition for
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Fig. 1. Uniaxial compression of a rock-like material.

uniqueness (Raniecki. 1979) the local criterion of sccond order work positiveness is used
(Maier and Hueckel, 1979). The particular case of loss of uniqueness in the form of strain
localization into planar bands (Rudnicki and Rice, 1975 Rice, 1976) is analyzed here
employing an explicit uncoupled criterion obtained by Bigoni and Hueckel (1991). In a
numerical example, experiments are simulated in triaxial compression at constant isotropic
stress and the relative threshold values of the second order work and the localization wre
calculated and discussed.

20 BASIC EQUATIONS FOR COUPLED ELASTOPLASTICITY

The main characteristic of the coupled elastoplastic law is that it admits change in the
clastic properties during the irreversible loading process. The clustic propertics are thus
described by the current clastic compliance tensor €, which is assumed to be a function of
plastic deformation 7

C=C(") (1)

where the fourth order tensor C is assumed to be symmetric and positive definite.
The elastic strain is given by the usual stress-strain refationship

where a is the stress tensor. [t may be seen that during plastic yielding, the change in
the elastic compliance tensor € generates an additional elastic strain rate, which is not
proportional to the stress rate, but rather to the stress itself] i.e.:

£ =Ci6+C:0, for f=0 and f=0 (3)
£=C:d, for f<0 or f=0, f<0 (4)

where f(a, k(")) is the yicld function. in which & is a scalar parameter governing the plastic
hardening. The latter term in (3) is irreversible, because the change in the elastic compliance
tensor is irreversible.

Clearly, change in elastic modulus is not the only source of irreversible deformation.
In fact, yielding of the material produces an irreversible strain which may be unlimited and
the rate of which is not proportional to stress as above but rather to the stress rate. This
strain rate will be referred to as plastic and it is assumed to be associated with the yicld
function, via a normality rule:
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& = AQ (5

where A is the plastic multiplier and Q is the yield surface gradient. In consequence of the
small strain assumption. the additivity of the elastic and plastic strain rates holds and thus
(3) and (35) vield:

. . (.:Cukh
&, = Counbin+ —5
¢ é"I

€604 + €. (6)

Making use of the flow rule (35). the following stress—strain relationship is finally obtained :
¢=C:6+A(B+Q) (M

where the symmetric second order tensor B is defined as:

B, = ‘zg:';“’ o Q.. (8)
Equation (7) is subject to the conditions :
Af =0, f<0., A=o. )
Here:
f=Q:é-HA (10)

where the plastic hardening modulus £/ 1s defined as:

n=-".q. (1)
e

Fromegn (7) it follows that the coupled elastoplasticity adopted here results in a particular
type of non-associative law, in which the variable degree of non-associativity, measured by
tensor B, is a function of the change in the clastic properties. In fact, the mode of the
irreversible strain rate in eqn (7) is determined by the tensor sum of the two second order
symmetric tensors Q and B,

3. CRITERIA OF SECOND ORDER WORK AND LOCALIZATION

In what follows the eriteria for a generic non-associative plastic flow rule will be
specialized to the coupled elastoplasticity. At a given stress state, with a known accumulated
plastic strain ¢”, the check against the criterion of the zero second order work is performed
by comparing the actual plastic hardening modulus £ with the critical hardening modulus
now cxpressed as:

1, = \[/(Q:E:Q)Q:E:Q+2B:E:Q+B:E:B)—Q:E:Q—Q:E:B] (12)

where E=C .
Uniqueness is ensured if # > H?,. The deformation rate at which second order work

reduces to zero s

8" =1 /Q:E:Q+2Q:E:B+B:E:BQ+/Q:E:QQ+B)]. VaeR~{0}. (13)
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The elastic tensor E and the tensor B+ Q depend explicitly on plastic strain. as opposed to
the usual plasticity formulation. Therefore, at the same stress point the critical hardening
modulus may be different for different plustic strain histories.

Localization is a form of non-unique rate response of material in which a strain rate
discontinuity forms across a planar band (Rudnicki and Rice. 1975 Rice. 1976). Explicit
expressions for the critical hardening modulus for localization and for the components of
vector o normal to the discontinuity band are derived elsewhere (Bigoni and Hueckel. 1991).
Excluding the cases of infinite bands, the normal to the band s necessarily defined by one
of the following sets of components (cases i. i and iii).

{1} None of the components of versor n s zero
S P !
ny = Kl-—d(P;“P\)(Q;“Q,x)“h[(})]“‘Px)(Q:"Q‘)‘F(P;—PJ)(Qi—Qx)],‘

o
n: = A :2}’(P; —Px)(Q; “Qz)‘ll[(ps *Pz){Q:“Q;x)‘F(P:‘P\)(Qt “Qt)]:
ni=1l-ni—n;: (14

where indices denote principal components, while the second order tensor P s defined as:

P=Q+B. (15)

Note that tensor P s co-axial with the stress tensor, because tensors B [see eqn (8)] and Q
are also. The co-axiality s necessary to obtain the solution for nin the principal stress
component systent. The scalars A, dand b are:

A== —QNHP =)= (Q:=Q NP, —/’t)]"‘ (16)
d=Q(l ~P)+PAQ, =00 +r[@AP, =PI+ PAQ, 0] (17
h= QP =P)+P(Q0,— Q@) +¥[Q (P =P+ PG~ @) (1¥)

where v is Poisson’s ratio (depending on ¢”).
{it} One of the components of versor nis zero:

Yo (=) PO -P0Q, Q,~vtrQ P —vuP
": —_ — i et 2 e T —— R—
([)I_I)[)(QI—Q[) Z(Ql——Ql) 2([,:—'[);)

ni=1l-n. n =0 )]
where the indices, denoting principal components and ranging between | and 3, are not
summed. The symbol tr indicates the trace of a tensor.
(11t} Two components of versor n are zero:

=1 nl=un=0 (20)

The actual solution for strain localization corresponds to such a sct of components of
n from among the cases (1), (i) and (iii), which maximizes the hardening modulus:

Him)y=2G20P-Qn—{n-P-n)(n-Q-n)~P:Q

- liv‘-'(n’l’-n-—lr P)n-Q-n—trQ)! (21)

where G is the elastic shear modulus (depending on €7).
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4. TRIAXIAL EXPERIMENT

The above criteria for the zero second order work and strain localization will now be
applied to a particular form of coupled elastoplastic model. developed for fine sand and
silt. An application to an axially symmetric., constant isotropic pressure. triaxial test ts then
discussed.

A set of constitutive assumptions are now made : the yield function is that of Drucker-
Prager with a tension cut-off. i.e. forg, 2 . 2 6, > 0:

f= Y —ap—k =0 (22

where compressive stresses are taken as positive. following the soil mechanics sign conven-
tion. p is the mean stress, i.e. p = tr ¢’'3. 2 is a constant constitutive parameter, related to
the internal friction angle, and J% is the second invariant of the deviatoric stress s:

The isotropic hardening rule is described by a scalar variable k. the rate of which is assumed
as a function of plastic deviatoric strain rate tensor, ¢7:

k=K. (24)

The choice of the hardening function & is made in such a way that the resulting hardening
modulus is & monotonically decreasing function of the deviatoric plastic strain and has an
asymptote when the deviatoric plastic strain is sutliciently kirge:

K= ayfexp(—ated —e)] = 11e0)/3 (25)

where o and ¢ are material parameters and &) is the deviatorie plastic strain invariant
defined as:

oh = \/ic":c". (26)

The hardening modulus reaches zero at a critical plastic deviatoric strain ¢, which is a
function of the sole isotropic stress p

[
by = " In(2—pip,) 27

where p,, is a hypothetical isotropic stress for which the hardening modulus is zero right at
the onset of plastic deviatoric strain. In this way the possibility arises to model a behavior
in which softening may be preceded by hardening, as is the case for most granular, cohesive
and brittle geologic materials as well as for concrete (see, ¢.g.. Bicniawski, 1971 ; Carpinteri,
1985 : Di Tommaso. 1984 Hillerborg, 1984 ; Ko and Scott, 1967).

The variation of clastic moduli in sand was found to be a function of plastic dilatancy
(Cavalera and Hueckel, 1985). The variation of the bulk and shear moduli, K and G
respectively, for sand may suitably be represented by the following functions:

K=Kyl +y2) and G = Geexp(—yxel) (28a.b)
where &7 is the plastic volumetric strain, K, and G, are respectively the initial moduli and

i and y are material parameters.
Substituting eqn (28) into (8). the tensor B becomes
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B=[C(tre)l+C.6]tr Q (29)

where 1 is the identity tensor and the scalars C, and C., are the rates of change of elastic
moduli:

R J
C o=--| — o 3
' (’1:{’[ 2G(3}.+ZG)J (30

¢ l
3 = —- e 3
¢ cel [JGjI 130

where 4 is the Lamé modulus (depending on ¢”).
The critical hardening modulus (12) (corresponding to zero second order work) for
the material described by the above constitutive functions is obtained as:

HY = MG+ GA2G DG+ (A + 26 D[+ Ciltr o)
+4G°CJ L+ 207+ 2G I Citr 6 = 4G2C, /J4]) "
~ G+ 2 A+ 26D +C tr 6] —2G2C2 T3] (32)

where Cy =30, + (.

To calculate £, at the given stress state, the plastic volumetric strain must be deter-
mined on which G and 2, C, and C, depend explicitly. Also. the calculation of the critical
modulus for localization requires a prior determination of the components of the versor n
[(14) (20)] for given tensors Q and B, which are functions of the plastic strain history. This
has been performed numerically for the integrated expression for the hardening parameter
& and the yield surface (22) to simulate a triaxial experiment on sand.

In two examined tests at constant isotropic stress equal to 45 and 100 kPa, sand was
subjected to priorinitial isotropic consolidation at &) = 0.003 and &, = 0.008 of compressive
plastic volumetric strain, respectively. Two cases are studied, in which the bulk modulus
varies cither according to eqn (28a) or remains constant (i = 0), whtle the shear modulus
varies according to eqn (28b).

Figures 2and 3 present the actual hardening modulus as a function of deviatoric strain,
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Fig. 3. Critical and actual hardening moduli. a, = 200 kPa, py = —0.68 kPa, x = |24, « = 281,
Gy = B33IKPa, g = — 15271, K, = 2162100 kPa. (@) Zero second order work for ¢ = 0 (con-
stant bulk modulus)

starting respectively at ¢, = 52 kPa, and ¢, = 120 kPa, where ¢, indicates the deviatoric
stress at the onsct of plastic shear straining. In the figures the evolution of eritical hardening
moduli, both for zero second order work and for localization, are also presented.

It may be seen that the actual hardening modulus decreases exponentially, eventually
reaching small negative values for 45 kPa, as is typical for medium dense sand. The critical
moduli both for uniqueness and for localization increase with deviatoric deformation. The
former modulus grows almost lincarly, while that for localization appears to approach a
constant value which depends on the confining stress. The ultimate value of the hardening
modulus necessary for localization is about —2.5 MPa for an isotropic stress of 45 kPa,
whereas it is about —5 MPa for an isotropic stress of 100 kPa. However, the actual
hardening modulus never reached the localization threshold in any of the considered cases.
Thus the shear band is predicted not to form, even at a strain of 16%, and actually has not
formed in the experiments (Cavalera and Hueckel, 1985). This is despite the fuct that, in
all cases, loss of positiveness of the sccond order work (and thus possibility of loss of
uniqueness of rate response) occurred at a relatively low strain (about 1%). The value of
the modulus at loss of positiveness of sccond order work is in all cases positive and increases
with the confining stress.

In Figs 4-6, the loss of positiveness of second order work is marked on the cor-
responding stress-strain curves and on volumetric vs deviatorie strain curves. The deviatoric
strain at the respective critical modulus is almost the same for both confining stress values.
The stress -strain curve is steeper at the critical point for the higher confining pressure test.
For the constant bulk modulus, the critical point occurs at larger strain than for the variable
modulus. Thus the variation of the bulk modulus appears to hiave a destabilizing effect.
The shear modulus at the critical point is almost half of the initial modulus.

5. CONCLUSIONS

The second order work criterion and the strain localization criterion were investigated
for an elastoplastic material with varying moduli of elasticity. The explicit form of the
localization criterion allows for an almost immediate evaluation of the related threshold,
even for the case of a complex and plastic strain-dependent criterion.
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Two examples show that for the discussed model in three-dimensional unconstrained
conditions, localization did not develop even at significant strain, despite a very marked
degradation of elusticity (namely a drop in the shear modulus to less than one-tenth of the
initial value) and despite the resulting very pronounced non-assoctativity. This confirms a
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stant bulk modulus).

similar conclusion obtained for other types of non-associative clastoplastic models (Rud-
nicki and Rice, 1975). However, the above mentioned destabilizing effects produce an carly
possibility of loss of unigqueness because of the loss of second order work positiveness, thus
leading to possible diffuse bifurcation modes (bulging or barrcling).

While the curves for critical modulus for zero second order work are sensitive to the
change in clastic bulk modulus, as seen by comparing Fig. 2 for ¢ # Oand Fig. 3fory = 0,
the critical modulus for localization seems to be almost unaffected by the change of clastic
bulk modulus.

Some of the above findings are known from experiments. Various diffuse bifurcation
forms develop in triaxial specimens of medium dense sand (such as barreling and bulging),
as was pointed out by Roscoe eraf, (1963), Hettler and Vardoulakis (1984), and Vardoulakis
and Drescher (1983). This was also the case in the presented simulation. However, no shear
band locatization appeared on triaxial specimens of medium dense sand up to 16% of axial
strain (Hettler and Vardoulakis, 1984). This fact is linked by Vardoulukis and Drescher
(1983) to the tack of' significant softening in this material. However, sands at such advanced
strain show both clasticity degradation and marked non-associativity (Tatsuoka and
Ishihara, 1974 Cavalera and Hueckel, 1985).
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